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Discrete mass spectrum of Z ( N )  spin systems perturbed by a 
thermal field 

Francisco C Alcaraz 
Departamento de Fisica, Universidade Federal de Slo Carlos, 13560 Slo Carlos, SP, Brazil 

Received 10 August 1990 

Abstract. We calculate numerically the lowest masses in the discrete mass spectrum of the 
Z ( N )  Fateev-Zamolodchikov spin model perturbed by a thermal operator. The mass ratios 
obtained are in agreement with those derived from the S-matrix introduced by Koberle 
and Swieca. 

During the last few years the hypothesis of conformal invariance has led to a consider- 
able advance in the description and understanding of critical phenomena in the 
two-dimensional arena (see [l] and [2] for a review). Recently, some methods have 
been derived [3-71 which permit us to obtain information about the off-critical theory 
in the neighbourhood of a critical point. In particular, in a series of papers, 
Zamolodchikov [5-71 suggested that if the conformal invariant theory (massless) is 
perturbed by a suitable chosen relevant scaling field the massive off -critical theory may 
have non-trivial conserved charges and might even be integrable. By a bootstrap 
approach the complete mass spectrum of the off-critical theory can be calculated. 

Numerical calculations of the mass spectrum of the Ising model (conformal anomaly 
c =;) [8,9], Blume-Cape1 [lo] or tricritical Ising model ( c  =$) [ l l ,  121 and Ashkin- 
Teller model ( c  = 1) [ 131 gave support to the above results. 

In this letter we calculate numerically the discrete mass spectrum of the Z ( N )  
Fateev-Zamolodchikov model [ 141 perturbed by a thermal operator (energy operator). 
Instead of working with the transfer matrix we will work with their associated quantum 
Hamiltonian [ 151 

1 L N-1 

N i = l  n = l  
HN(6)= -- C {[S(i)S+(i+l)]n+(l+6)R"(i)}/sin(~n/~) (1) 

where L is the lattice size and S ( i ) ,  R (  i )  are 4 x 4 matrices satisfying their Z( N) algebra 

[ S ( i ) ,  R ( j ) l =  [S(i), S(i)I  = R ( j ) l =  0 i # j  ( 2 a )  

S ( i ) R ( j )  = e x p ( i S ~ / N ) R ( i ) S ( j )  ~ ~ ( i )  = SN(i) = 1. (26) 
Earlier numerical results [ 161 show us that the infinite system (L + a) is critical at 

S = 6, = 0, being the critical fluctuations governed by the Z( N) parafermionic quantum 
field theory introduced by Zamolodchikov and Fateev [17]. The conformal anomaly 
of these theories has the value c = 2( N - 1)/( N +2) and the cases N = 2 and N = 3 
correspond to the Ising and three-state Potts model. 

The thermal perturbation ( 8  # 0) in (1) does not destroy the global Z( N) symmetry 
and because (1) at 6 = 0 has an infinite number of conserved charges we expect that 
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their associated scattering S-matrix is that derived some years ago by Koberle and 
Swieca [18] where the mass ratios are given by 

mi sin(rri/N) 
m1 sin(rr/N) 

i = 1 , 2  ,..., N - 1 .  _- - (3) 

The correlation length of the infinite system (l) ,  for 6 # 0, diverges as S1’(2-xe) 
when 6 + 0, where X, = 4/( N + 2) is the dimension of the energy (thermal) operator 
[17]. In order to calculate numerically the mass spectrum and test the conjecture (3) 
we apply the numerical scheme followed by Sagdeev and Zamolodchikov [9] in the 
study of the Ising model in an external magnetic field. According to this scheme in 
the asymptotic regime, where 6 + 0 and L+ CO, with 

(4) x = s 1 / ( 2 - X z ) ~  = s ( N + ~ ) / ~ N L  

kept fixed, the zero-momentum eigenenergies EK (8, L )  (K = 0,1,2, . . . ), for N > 2, 
should behave as 

EK(s, L )  = e,L+ s ( ~ + ~ ) ’ ~ ~  FK(X)+ 6 ( N + 6 ) ’ 2 N  G K  (XI 
HK ( X  ) + 6‘ + l 4 ) l Z N  z K(X)+. f a  ( 5 )  + ~ ( N + l 0 ) / 2 N  

where e, is the ground-state energy per particle of the infinite system at 6 = 6, = 0. 
The masses are obtained from the large-X behaviour of the functions FK(X), i.e. 

mK - FK (XI - FdX) ( 6 )  
where F,(X) is the function associated in ( 5 )  with the ground-state energy. In order 
to derive ( 5 )  we have initially analysed the finite-size corrections of (1) at S = 0 and 
verified that the most important corrections are due to the Z( N) neutral operator with 
dimension X,, = 2 + X, = (8 + 2 N ) / (  N + 2). 

The Hamiltonian (1) with periodic boundary conditions commutes with the Z (  N) 
charge operator 0 defined by 

L 

e x p ( i 2 r r Q / ~ )  = n ~ ( j )  (7) 
j = 1  

for arbitrary values of 6. Consequently in the basis where the R ( i )  operators are 
diagonal tke Hilbert space is sepdrated into N disjoint sectors labelled by the eigen- 
values of Q ( q  = 0, 1, . . . , N - 1). The ground state belongs to the q = 0 sector, the first 
excited state to the sector with q = 1 and the sectors with o = q  and Q =  N-q  
( q  = 1,2,  . . . , N - 1) are degenerated. These sectors can be further block diagonalized 
according to the eigenvalues of the translation operator in the lattice (linear 
momentum). 

We have computed numerically, for small lattice sizes, the low zero-momentum 
eigenstates of the Z( N )  Hamiltonian ( l ) ,  with N = 3, . . . , 7  and 6 > 0, where the model 
is in its disordered (paramagnetic) regime. We then use relation ( 5 ) ,  for some values 
of X, in order to calculate the functions FK(X). Let us denote by Fg(X) the function 
related to the K zero-momentum state (K = 0,1,2,  . . . ) in the sector with charge 6 = q 
and obtain, assuming ( 5 )  exact for lattices sizes, L-3, L-2, L-1 and L. The mass 
ratios are then obtained in the asymptotic regime L+CO and X-PCO of the finite-size 
sequences 

F%(x, L) - F:(x, L )  
F;(X, L )  - F:(x, L )  

m% R%(X, L )  = +- 
m: 

where mg are the associated masses and m;= m, is the lightest one. 
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Table 1. The mass-ratio estimators R & ( X ,  L) defined in (8) for the Z ( N )  models ( N  = 
3,.  . . ,7). The conjectured values are obtained by combining the ratios given by (2). 

Z(3) 13 4 
13 6 
13 8 
13 10 
Conjectured 

10 4 
10 6 
10 8 
10 10 
Conjectured 

9 4 
9 6 
9 8 
9 10 

Conjectured 

8 4 
8 6 
8 8 
8 10 

Conjectured 

7 4 
7 6 
7 8 
7 10 

Conjectured 

1.998 994 
2.001 497 
2.001 880 
2.001 287 
2 

2.007 758 
1.998 05 1 
2.000 372 
2.002 456 
2 

1.990 094 
1.997 214 
2.003 701 
2.006 502 
2 

1.979 226 
1.998 833 
2.010 641 
2.014 101 
2 

1.961 263 
2.000 031 
2.020 937 
2.012 517 
2 

2.149 689 
2.072 017 
2.042 343 
2.019 803 
2 

2.526 061 
2.430 513 
2.420 605 
2.420 383 
2.414 213 

2.585 135 
2.591 925 
2.612 732 
2.630 395 
2.618 033 

2.620 715 
2.659 639 
2.701 922 
2.744 378 
2.732 050 

2.596 376 
2.625 581 
2.726 899 
2.826 107 
2.801 937 

- 
- 
- 
- 
- 
1.369 576 
1.405 939 
1.415 346 
1.419 176 
1.414 213 

1.545 371 
1.600 500 
1.617 361 
1.630 808 
1.618 033 

1.624 995 
1.683 943 
1.713 606 
1.749 150 
1.732 050 

1.634 638 
1.693 112 
1.757 506 
1.830612 
1.801 937 

- 
- 
- 
- 
- 
2.622 030 
2.250 722 
2.125 526 
2.072 210 
2 

2.789 032 
2.323 987 
2.164 232 
2.095 762 
2 

2.976 190 
2.404 216 
2.200 243 
2.1 16 954 
2 

3.155 652 
2.464 406 
2.233 377 
2.145 080 
2 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

1.851 969 
1.944 041 
1.972 448 
2.015 41 1 
2 

1.990213 
2.100 318 
2.180 908 
2.283 557 
2.246 979 

Table 2. The discrete mass spectrum in the charge sector 
( N  = 3, . . . ,7 ) .  The masses are given by mi = m, sin( nil N)/sin( n/  N) ( i  = 1,2, . . . ). 

(0, 1, . . . ) of the Z( N)  models 

Model d=O d =  1 0 = 2  d = 3  

In table 1 we present for the largest lattice sizes, compatible with our computational 
facilities, the estimators R L ( X ,  L) for N = 3 ( L  = 13), N = 4 ( L  = lo), N = 5 ( L  = 9),  
N = 6 (L  = 8) and N = 7 ( L  = 7). We also show in this table the conjectured mass ratios 
given in (2). These results together with our numerical analysis of the asymptotic 
(L  -* 00, X + 00) values of the finite-size sequences (8) clearly imply that the mass ratios 
occurring in the Z( N )  Hamiltonian (1) are given by (2), thus indicating the massive 
field theory introduced in [18] as its underlying field theory. Finally in table 2 we 
summarize our results for the lowest discrete masses in the several charge sectors. 
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